Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

1,2-Bis(diphenylphosphino)benzene and two related mono-methiodides, $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PR}_{2}\right)\left(\mathrm{PR}_{2} \mathrm{Me}\right)\right] \mathrm{I}(R=\mathrm{Ph}$ or Me$)$

William Levason, Gillian Reid and Michael Webster*

School of Chemistry, University of Southampton, Southampton SO17 1BJ, England Correspondence e-mail: m.webster@soton.ac.uk

Received 25 March 2006
Accepted 30 April 2006
Online 30 June 2006
The structures of the compounds 1,2-bis(diphenylphosphino)benzene, $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{P}_{2}$, [2-(diphenylphosphino)phenyl]methyldiphenylphosphonium iodide, $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{P}_{2}^{+} \cdot \mathrm{I}^{-}$, and [2-(dimethylphosphino)phenyl]trimethylphosphonium iodide, $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{P}_{2}^{+} \cdot \mathrm{I}^{-}$, show that quaternization only occurs at one P centre and results in significantly shorter $\mathrm{P}-\mathrm{C}$ bonds and larger $\mathrm{C}-\mathrm{P}-$ C angles, consistent with the formal oxidation from $\mathrm{P}^{\mathrm{III}}$ to P^{V}.

Comment

Diphosphines, o- $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{P} R_{2}\right)_{2}(R=\mathrm{Ph}$, Me, etc. $)$, are widely used in coordination and organometallic chemistry. The rigid o-phenylene backbone pre-organizes the ligands for chelation and its rigidity resists dissociation from metal centres (the ' o phenylene backbone' effect; Levason, 1990). A combination of these effects, especially when combined as in the case of $R=$ Me with small steric requirements and exceptionally strong σ donation, produces ligands that can form robust complexes with most transition metals, even hard $3 d$-metal centres, such as $\mathrm{Mn}^{\mathrm{II}}$, $\mathrm{Fe}^{\mathrm{IV}}$ or $\mathrm{Ni}^{\mathrm{IV}}$, or oxophilic early metals including $\mathrm{Zr}^{\mathrm{IV}}$ and $\mathrm{Hf}^{\text {IV }}$ (Warren \& Bennett, 1976; Levason, 1990; Levason et al., 2004). Complexes with p-block Lewis acids, including the halides of Ga, Sb and As , are also readily prepared (Hill et al., 2002; Genge et al., 2001; Sigl et al., 1998a). A further consequence of the o-phenylene backbone is that, in contrast to diphosphinoalkanes, quaternization of $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{P}_{2}\right)_{2}$ with MeI in acetone or alcohols affords exclusively the monophosphonium salts $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{P} R_{2}\right)\left(\mathrm{P} R_{2} \mathrm{Me}\right)\right] \mathrm{I}$, since the nucleophilicity of the second P atom is markedly reduced by the positive charge on the neighbouring phosphonium centre. Phosphonium salts, $\left[\mathrm{P} R_{4}\right]^{+}$, are widely used as large cations to stabilize a variety of anionic species and to phase-transfer anions into low polarity organic media. The (2-di- R phosphinophenyl)phosphonium species behave similarly but also have the potential to function as positively charged ligands, binding through the phosphane function to metals leading to zwitterionic products. A related example involving mono-quaternized $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2} \mathrm{H}^{+}$has been structurally characterized in $\left[\mathrm{TiCl}_{5}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2} \mathrm{H}\right)\right.$] (Hart et al., 2001).

During the course of studies on the coordination chemistry of $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{P} R_{2}\right)_{2}(R=\mathrm{Ph}$ or Me), we obtained crystals of the three title materials and report their structures here.

(I)

(II)

(III)
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}$, (I) (Fig. 1 and Table 1), has $\mathrm{P}-\mathrm{C}$ distances of 1.836 (3) -1.851 (3) \AA; addition of the Me group in the phosphonium salt (II) results in shortening of the P1-C distances to $1.787(2)-1.814$ (2) \AA, consistent with formal oxidation from $\mathrm{P}^{\mathrm{III}}$ to P^{V}, leaving the $\mathrm{P} 2-\mathrm{C}$ distances essentially unchanged (Fig. 2 and Table 2). Although even with excess MeI quaternization only occurs at one P centre (evidence of transmitted electronic effects), there are no significant differences in the $\mathrm{P}-\mathrm{C}$ bond lengths and the $\mathrm{C}-$ $\mathrm{P}-\mathrm{C}$ angles at P 2 in (II) [the average of the three angles is $102.2(19)^{\circ}$] compared with those in (I) [the average of the six angles is $101.8(16)^{\circ}$. The $\mathrm{P} \cdots \mathrm{P}$ distance of the neutral ligand [3.166 (1) \AA] increases in the methiodide to 3.300 (1) \AA, and the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles increase by about 7° at the phosphonium P atom. The observed structural changes on quaternization generally parallel those observed by Dunne et al. (1991) in PPh_{3} derivatives, although the presence of $\mathrm{P}^{\mathrm{III}}$ and P^{V} within the same molecule in $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right] \mathrm{I}$ provides a particularly clear example. Comparison of (I) with the crystal structure of $o-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right]_{2}$ (Davis et al., 2006) reveals similar changes in the geometry at both P atoms.
$o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}$ is a liquid at ambient temperatures and has not been obtained in crystalline form; thus, comparisons with the mono-methiodide $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{3}\right)\right] \mathrm{I}$, (III), are not possible. However, the same trends as observed in (II) are

Figure 1
The discrete molecule of $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
apparent in the cation, with the $\mathrm{P} 1-\mathrm{C}$ distances shorter by $c a$ $0.04 \AA$ than the $\mathrm{P} 2-\mathrm{C}$ distances and with the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles at P 1 some 8° larger than those at P 2 (Fig. 3 and Table 3). While $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)_{2}$ very readily oxidizes in air, the $\mathrm{P}^{\text {III }}$ centre in the mono-methiodide appears to be stable to air oxidation. The shortest anion-cation distance in the methiodides is $3.04 \AA(\mathrm{I} \cdots \mathrm{H})$, indicating no unusual interactions. Related compounds in the literature include $o-\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{PMePh})_{2}$ (Roberts et al., 1980) and $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right]^{+}($Sigl et al., 1998b)

Figure 2
The structure of $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right] \mathrm{I}$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 3
The structure of $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{3}\right)\right] \mathrm{I}$, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Experimental

$o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{P} R_{2}\right)_{2}(R=\mathrm{Ph}$ or Me) were prepared according to published procedures (McFarlane \& McFarlane, 1983; Kyba et al., 1983). $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{P} R_{2}\right)\left(\mathrm{P} R_{2} \mathrm{Me}\right)\right] \mathrm{I}(R=\mathrm{Me}$ or Ph$)$ were prepared by reaction of the diphosphanes with excess MeI in gently refluxing acetone. White microcrystalline products separated on cooling. $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}$: m.p. $458 \mathrm{~K} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ relative $\left.85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right): \delta-13.0$; EI-MS $(m / z)=446$ a.m.u. $\left(M^{+}\right) .\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right] \mathrm{I}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta-14.8\left(d,{ }^{3} J_{\mathrm{PP}}=26 \mathrm{~Hz}\right), 22.6\left(d,{ }^{3} J_{\mathrm{PP}}=26 \mathrm{~Hz}\right) ;$ ES-MS $(m / z)=461$ a.m.u. $\left(M^{+}\right) .\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{3}\right)\right] \mathrm{I}:{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta-53.4\left(d,{ }^{3} J_{\mathrm{PP}}=22 \mathrm{~Hz}\right), 22.0\left(d,{ }^{3} J_{\mathrm{PP}}=22 \mathrm{~Hz}\right)$; ES-MS $(m / z)=213$ a.m.u. $\left(M^{+}\right)$. Crystals of $o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PPh}_{2}\right)_{2}$ were obtained by slow evaporation from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution in an inert atmosphere. Crystals of the other two compounds were obtained directly from the preparations.

Compound (I)

Crystal data
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{P}_{2}$
$M_{r}=446.43$
Triclinic, $P \overline{1}$
$a=8.1930$ (15) A
$b=12.442$ (2) \AA
$c=12.584$ (3) \AA
$\alpha=109.846(5)^{\circ}$
$\beta=99.918$ (5) ${ }^{\circ}$
$\gamma=98.330(15)^{\circ}$
Data collection
Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\text {min }}=0.892, T_{\text {max }}=0.985$
$V=1159.6(4) \AA^{3}$
$Z=2$
$D_{x}=1.279 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colourless
$0.12 \times 0.10 \times 0.06 \mathrm{~mm}$

15781 measured reflections 5122 independent reflections 2565 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.132$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.132$
$S=0.93$
5122 reflections
290 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0398 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I).

P1-C1	$1.851(3)$	$\mathrm{P} 2-\mathrm{C} 19$	$1.846(3)$
$\mathrm{P} 1-\mathrm{C} 7$	$1.839(3)$	$\mathrm{P} 2-\mathrm{C} 25$	$1.838(3)$
$\mathrm{P} 1-\mathrm{C} 13$	$1.836(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.420(4)$
$\mathrm{P} 2-\mathrm{C} 2$	$1.849(3)$		
$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 7$	$104.17(13)$	$\mathrm{C} 25-\mathrm{P} 2-\mathrm{C} 2$	$101.79(13)$
$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 1$	$102.65(13)$	$\mathrm{C} 19-\mathrm{P} 2-\mathrm{C} 2$	$101.67(13)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1$	$100.67(13)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$	$117.8(2)$
$\mathrm{C} 25-\mathrm{P} 2-\mathrm{C} 19$	$99.70(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$	$118.4(2)$

Compound (II)

Crystal data

$\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{P}_{2}{ }^{+} \cdot \mathrm{I}^{-}$
$M_{r}=588.37$
Triclinic, $P \overline{1}$
$a=10.3323(5) \AA \AA$
$b=11.8412(10) \AA$
$c=12.7828(10) \AA$
$\alpha=69.536(3)^{\circ}$
$\beta=67.260(3)^{\circ}$
$\gamma=70.847(4)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1997)
$T_{\text {min }}=0.855, T_{\text {max }}=0.945$

$$
V=1317.22(16) \AA^{3}
$$

$Z=2$
$D_{x}=1.483 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.36 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Needle, colourless $0.20 \times 0.08 \times 0.04 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.074$
$S=1.02$
5956 reflections
308 parameters
H -atom parameters constrained

20101 measured reflections 5956 independent reflections 5063 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.053$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.036 P)^{2}\right. \\
\quad \\
\quad 0.2511 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.95 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.08 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

Table 2
Selected geometric parameters ($\AA,^{\circ}$) for (II).

P1-C1	$1.814(2)$	$\mathrm{P} 2-\mathrm{C} 2$	$1.858(2)$
P1-C7	$1.801(2)$	$\mathrm{P} 2-\mathrm{C} 19$	$1.838(2)$
P1-C13	$1.789(2)$	$\mathrm{P} 2-\mathrm{C} 25$	$1.834(2)$
P1-C31	$1.787(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.406(3)$
C31-P1-C13	$111.96(11)$	$\mathrm{C} 25-\mathrm{P} 2-\mathrm{C} 19$	$104.26(10)$
C31-P1-C7	$106.12(11)$	$\mathrm{C} 25-\mathrm{P} 2-\mathrm{C} 2$	$100.67(10)$
C13-P1-C7	$109.57(10)$	$\mathrm{C} 19-\mathrm{P} 2-\mathrm{C} 2$	$101.50(10)$
C31-P1-C1	$111.19(11)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$	$120.79(16)$
C13-P1-C1	$107.57(10)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$	$121.29(17)$
C7-P1-C1	$110.46(10)$		

Compound (III)

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{P}_{2}^{+} \cdot \mathrm{I}^{-}$
$Z=4$
$M_{r}=340.10$
Monoclinic, $P 2_{1} / c$
$a=9.2002$ (16) A
$D_{x}=1.532 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$b=11.846$ (3) \AA
$c=13.566$ (2) \AA
$\beta=94.312(14)^{\circ}$
$V=1474.3$ (5) \AA^{3}

Data collection

Rigaku AFC-7S diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.596, T_{\text {max }}=0.890$
5375 measured reflections
2587 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.121$
$S=0.97$
2587 reflections
128 parameters

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$S=0.97$
2587 reflections
128 parameters
$\mu=2.36 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Rhomb, colourless
$0.2 \times 0.2 \times 0.05 \mathrm{~mm}$

1772 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.120$
$\theta_{\text {max }}=25.0^{\circ}$
3 standard reflections every 150 reflections intensity decay: none

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0668 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=2.21 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.89 \mathrm{e}^{-3}$

Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (III).

P1-C1	$1.820(5)$	$\mathrm{P} 2-\mathrm{C} 2$	$1.858(5)$
$\mathrm{P} 1-\mathrm{C} 7$	$1.794(6)$	$\mathrm{P} 2-\mathrm{C} 10$	$1.832(6)$
$\mathrm{P} 1-\mathrm{C} 8$	$1.795(6)$	$\mathrm{P} 2-\mathrm{C} 11$	$1.843(7)$
$\mathrm{P} 1-\mathrm{C} 9$	$1.792(5)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.390(8)$
$\mathrm{C} 9-\mathrm{P} 1-\mathrm{C} 8$	$110.4(3)$	$\mathrm{C} 10-\mathrm{P} 2-\mathrm{C} 11$	$100.4(3)$
$\mathrm{C} 9-\mathrm{P} 1-\mathrm{C} 7$	$106.4(3)$	$\mathrm{C} 10-\mathrm{P} 2-\mathrm{C} 2$	$101.3(3)$
$\mathrm{C} 8-\mathrm{P} 1-\mathrm{C} 7$	$106.5(3)$	$\mathrm{C} 11-\mathrm{P} 2-\mathrm{C} 2$	$100.5(3)$
$\mathrm{C} 9-\mathrm{P} 1-\mathrm{C} 1$	$111.4(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 1$	$123.3(4)$
$\mathrm{C} 8-\mathrm{P} 1-\mathrm{C} 1$	$112.2(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{P} 2$	$121.4(4)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1$	$109.6(3)$		

H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.95$ (aromatic) and $0.98 \AA$ (methyl)]. For (I) and (II), a common refined $U_{\text {iso }}(\mathrm{H})$ value was used for all the H atoms. For (III), $U_{\text {iso }}(\mathrm{H})$ values
for phenyl H atoms were set at $1.2 U_{\mathrm{eq}}(\mathrm{C})$ of the bonded C atoms, whilst the methyl H atoms were given a common refined $U_{\text {iso }}(\mathrm{H})$ value. The largest peak and trough in the difference electron-density map for $\left[o-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{PMe}_{2}\right)\left(\mathrm{PMe}_{3}\right)\right]$ I were less than $1 \AA$ from the I atom.

For compounds (I) and (II), data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski \& Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO. For compound (III), data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC for access to the Chemical Database Service at Daresbury and Dr N. J. Hill for data collections.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3012). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Davis, M. F., Levason, W., Reid, G. \& Webster, M. (2006). Polyhedron, 25, 930 936.

Dunne, B. J., Morris, R. B. \& Orpen, A. G. (1991). J. Chem. Soc. Dalton Trans. pp. 653-661.
Genge, A. R. J., Hill, N. J., Levason, W. \& Reid, G. (2001). J. Chem. Soc. Dalton Trans. pp. 1007-1012.
Hart, R., Levason, W., Patel, B. \& Reid, G. (2001). Eur. J. Inorg. Chem. pp. 2927-2933.
Hill, N. J., Levason, W. \& Reid, G. (2002). J. Chem. Soc. Dalton Trans. pp. 1188-1192.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kyba, E. P., Liu, S. T. \& Harris, R. L. (1983). Organometallics, 2, 1877-1879.
Levason, W. (1990). Comments Inorg. Chem. 9, 331-361.
Levason, W., Matthews, M. L., Patel, B., Reid, G. \& Webster, M. (2004). Dalton Trans. pp. 3305-3312.
McFarlane, H. C. E. \& McFarlane, W. (1983). Polyhedron, 2, 303-304.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Roberts, N. K., Skelton, B. W. \& White, A. H. (1980). J. Chem. Soc. Dalton Trans. pp. 1567-1571.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sigl, M., Schier, A. \& Schmidbaur, H. (1998a). Eur. J. Inorg. Chem. pp. 203210.

Sigl, M., Schier, A. \& Schmidbaur, H. (1998b). Z. Naturforsch. Teil B, 53, 1313-1315.
Warren, L. F. \& Bennett, M. A. (1976). Inorg. Chem. 15, 3126-3140.

